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Gerry Brown: “Take a position! Then, I’ll criticize.”
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I M ∼ (1 − 2)M�

M� ' 2 × 1033 g.

I R ∼ (8 − 16) km

I ρ > 1015 g cm−3

I Bs = 109 − 1015 G.
I Tallest mountain?
I Atmospheric

height?

Lattimer & Prakash , Science 304, 536 (2004).
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Traits of Compact Objects

Object Mass Radius Mean Density
(M�) (R) (g cm−3)

Sun M� R� ∼ 1

White Dwarf
∼
< M� ∼ 10−2R�

∼
< 107

Neutron Star 1 − 2 M� ∼ 10−5R�
∼
< 1015

Black Hole Arbitrary 2GM/c2 ∼ M/R3

• M� ' 2 × 1033 g , R� ' 7 × 105 km ,
• M�c2 ' 1.8 × 1054 erg ,
• 2GM�/c2 ' 2.95 km , R⊕ ' 6.4 × 103 km .
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The Depth of Gravity’s Well

How much work is needed to raise a unit mass of matter through an
infinite height?

W =

∫ ∞

R

f dr =

∫ ∞

R

GM

r2
dr =

GM

R

Object Surface Potential
GM/Rc2

Sun ∼ 10−6

White Dwarf ∼ 10−4

Neutron Star ∼ 10−1

Black Hole ∼ 1

G=6.67 × 10−11 m3 kg−1 s−2
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The Strength of Gravity
What kinetic energy is needed to surmount the gravitational energy?

1

2
mv2 =

GMm

R
⇒ v =

√
2GM

R

Object Escape Speed (in km/sec)
estimated by

√
2GM/R

Moon 2.4
Earth 11.2
Jupiter 61
Sun 620
White Dwarf 5000
Neutron Star 130,000
Black Hole 3 × 105 (c)
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Gravitational Binding Energies

• What is the Binding Energy (B.E.) of our Earth if it had a uniform
density distribution?

B.E. =
3

5

GM2
⊕

R⊕

= 2.4 × 1032 joules

= 6.6 × 1025 kwh

Object Binding energy (in joules)
estimated by 3GM 2/5R

Moon 1.2 × 1029

Earth 2.4 × 1032

Sun 2.4 × 1041

White Dwarf 2.4 × 1043

Neutron Star 1046

Our Galaxy 5 × 1052
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Neutron Star Curiosities

What is the tallest mountain that can be supported on a neutron star?

h < hmax ∼
Eliq

Ampg

A: Molecular weight of the planetary material
g: Surface gravity
Eliq: Liquefaction energy per molecule

• For Earth, hmax ' 10 km
• For a neutron star, hmax ' 1 cm
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Neutron Star Curiosities

What is the height of the atmosphere of a neutron star?

h =
RT

µg

R: Gas constant
T : Temperature
µ: The mean molecular weight
g: Surface gravity

• For Earth, h = 8 km
• For a neutron star, h = 1 mm
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Where Are They?

1 pc ' 3.1 × 1016 m
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Measured Neutron Star Masses

I Mean & weighted
means in M�

I X-ray binaries:
1.62 & 1.48

I Double NS binaries:
1.33 & 1.41

I WD & NS binaries:
1.56 & 1.34

I Lattimer & Prakash,
PRL 94 (2005) 111101
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Who’re they & why so happy?
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Neutron star radius measurements

Object R (km) D (kpc) Ref
Omega Cen 13.5 ± 2.1 5.36 ± 6% Rutledge et al. (’02)
Chandra
Omega Cen 13.6 ± 0.3 5.36 ± 6% Gendre et al. (’02)
(XMM)
M13 12.6 ± 0.4 7.80 ± 2% Gendre et al. (’02)
(XMM)
47 Tuc X7 14.5+1.6

−1.4 5.13 ± 4% Rybicki et al. (’05)
(Chandra) (1.4 M�)
M28 14.5+6.9

−3.8 5.5 ± 10% Becker et al. (’03)
(Chandra)
EXO 0748-676 13.8 ± 1.8 9.2 ± 1.0 Ozel (’06)
(Chandra) (2.10 ± 0.28 M�)
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Inferred Surface Temperatures

Lattimer & Prakash , Science 304, 536 (2004).
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Periods & Magnetic Fields
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Physics & Astrophysics of Neutron Stars
I Cores of neutron stars may contain hyperons, Bose condensates, or

quarks (Exotica)

I Can observations of M, R & B.E (composition & structure)
& P, Ṗ , TS & B etc., (evolution) reveal Exotica ?

I Neutron stars implicated in x-ray & γ-ray bursters, mergers with
other neutron stars & black holes, etc.

I Observational Programs :

SK, SNO, LVD’s, AMANDA ... (ν’s)
HST, CHANDRA, XMM, ASTROE ... (γ’s)
LIGO, VIRGO, GEO600, TAMA ... (Gravity Waves)

Connections:
Atomic, Cond. Matter, Nucl. & Part., Grav. Physics

I Theory : Many-body theory of strongly interacting systems,
Dynamical response (ν- & γ- propagation & emissivities)

I Experiment : h, e− and ν- scattering experiments on nuclei, masses
of neutron-rich nuclei, heavy-ion reactions, etc.
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How Neutron Stars are Formed

Lattimer & Prakash , Science 304, 536 (2004).
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Equations of Stellar Structure-I

• In hydrostatic equilibrium, the structure of a spherically symmetric
neutron star from the Tolman-Oppenheimer-Volkov (TOV) equations:

dM(r)

dr
= 4πr2ε(r)

dP (r)

dr
= −

GM(r)ε(r)

c2r2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

M(r)c2

]

[
1 −

2GM(r)

c2r

]

• G := Gravitational constant
• P := Pressure
• ε := Energy density
• M(r) := Enclosed gravitational mass

• Rs = 2GM/c2 := Schwarzschild radius
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Equations of Stellar Structure-II

• The gravitational and baryon masses of the star:

MGc2 =

∫ R

0

dr 4πr2 ε(r)

MAc2 = mA

∫ R

0

dr 4πr2 n(r)
[
1 −

2GM(r)

c2r

]1/2

• mA := Baryonic mass
• n(r) := Baryon number density

• The binding energy of the star B.E. = (MA − MG)c2.

To determine star structure :
• Specify equation of state, P = P (ε)
• Choose a central pressure Pc = P (εc) at r = 0
• Integrate the 2 DE’s out to surface r = R, where P (r = R) = 0.
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Nucleonic Equation of State

I Energy (E) &
Pressure (P )
vs. scaled density
(u = n/n0).

I Nuclear matter
equilibrium density
n0 = 0.16 fm−3.

I Proton fraction
x = np/(np + nn).

I Nuclear matter : x = 1/2.

I Neutron matter : x = 0.
I Stellar matter in β−

equilibrium :
x = x̃.
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Results of Star Structure

I Stellar properties for
soft & stiff (by
comparison) EOS’s.

I Causal limit : P = ε .
I Mg : Gravitational

mass
I R : Radius
I BE : Binding energy

I nb : Central density

I I : Moment of inertia
I φ : Surface red shift ,

eφ/c2 =
(1 − 2GM/c2R)−1/2 .
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Constraints on the EOS-I
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I R > Rs = 2GM/c2 ⇒
M/M� ≥ R/Rs� ;
Rs� = 2GM�/c2

' 2.95 km .
I Pc < ∞

⇒ R > (9/8)Rs

⇒ M/M� ≥
(8/9)R/Rs� .

I Sound speed cs :
cs = (dP/dε)1/2 ≤ c
⇒ R > 1.39Rs

⇒ M/M� ≥
R/(1.39RS�) .

I If P = ε above
nt ' 2n0 ,
R > 1.52Rs ⇒
M/M�R/(1.52Rs�) .
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Constraints on the EOS-II
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0.4

0.8

1.2

1.6

2

2.4

2.8

I Mmax ≥ Mobs ;
In PSR 1913+16,
Mobs = 1.44 M� .

I In PSR 1957+20,
PK = 1.56 ms :
ΩK ' 7.7 × 103

(
Mmax

M�

)1/2 (
Rmax

10 km

)−3/2
s−1

I Mom. of Inertia I :
Imax = 0.6×1045 g cm2

(
Mmax

M�

) (
Rmax

10 km

)2

f(Mmax, Rmax)

I In SN 1987A
B.E. ' (1 − 2)
×1053 ergs.
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Composition of Dense Stellar Matter
• Crustal Surface :

electrons, nuclei, dripped neutrons, · · · set in a lattice
new phases with lasagna, sphagetti, · · · like structures

• Liquid (Solid?) Core :
n, p, ∆, · · · leptons: e±, µ±, ν ′

es, ν
′
µs

Λ, Σ, Ξ, · · ·
K−, π−, · · · condensates
u, d, s, · · · quarks

• Constraints :
1. nb = nn + np + nΛ + · · · : baryon # conservation
2. np + nΣ+ + · · · = ne + nµ : charge neutrality
3. µi = biµn − qiµ` : energy conservation

⇒
µΛ = µΣ0 = µΞ0 = µn µΣ− = µΞ− = µn + µe µp = µΣ+ = µn − µe

⇒
µK− = µe = µµ = µn − µp

⇒
µd = µu + µe = µs = (µn + µe)/3
µu = (µn − 2µe)/3 24/40



Nucleonic Equation of State

I Energy (E) &
Pressure (P )
vs. scaled density
(u = n/n0).

I Nuclear matter
equilibrium density
n0 = 0.16 fm−3.

I Proton fraction
x = np/(np + nn).

I Nuclear matter : x = 1/2.

I Neutron matter : x = 0.
I Stellar matter in β−

equilibrium :
x = x̃.
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Nuclear Matter-I
Consider equal numbers neutrons (N) and protons (Z) in a large volume
V at zero temperature (T = 0).

Let n = (N + Z)/V = nn + np denote the neutron plus proton number
densities; n = 2k3

F /(3π2), where kF is the Fermi momentum.

Given the energy density ε(n) inclusive of the rest mass density mn,
denote the energy per particle by E/A = ε/n, where A = N + Z.

Pressure: From thermodynamics, we have

P = −
∂E

∂V
= −

dE

d(A/n)

= n2
d(ε/n)

dn
= n

dε

dn
− ε = nµ − ε ,

where µ = dε/dn is the chemical potential inclusive of the rest mass m.
At the equilibrium density n0, where P (n0) = 0, µ = ε/n = E/A.
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Nuclear Matter-II
Incompressibility: The compressibility χ is usually defined by

χ = −
1

V

∂V

∂P
=

1

n

(
dP

dn

)−1

However, in nuclear physics applications, the incompressibility factor

K(n) = 9
dP

dn
= 9 n

d2ε

dn2
, or

= 9
d

dn

[
n2

d(E/A)

dn

]
= 9

[
n2d2(E/A)

dn2
+ 2n

d(E/A)

dn

]

is used. At the equilibrium density n0, the compression modulus

K(n0) = 9n2
0

d2(E/A)

dn2

∣∣∣∣
n0

= k02

F

d2(E/A)

dk2
F

∣∣∣∣
k0

F

.

Above, k0
F = (3π2n0/2)1/3 denotes the equilibrium Fermi momentum.
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Nuclear Matter-III

Adiabatic sound speed: The propagation of small scale density
fluctuations occurs at the sound speed obtained from the relation

(cs

c

)2

=
dP

dε
=

dP/dn

dε/dn

=
1

µ

dP

dn
=

d ln µ

d ln n
.

Alternative relations for the sound speed squared are

(cs

c

)2

=
K

9µ
= Γ

P

P + ε
,

where Γ = d ln P/d ln ε is the adiabatic index. It is desirable to require
that the sound speed does not exceed that of light.
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Neutron-rich Matter-I
• α = (nn − np)/n := excess neutron fraction
• n = nn + np := total baryon density
• x = np/n = (1 − α)/2 := proton fraction

The neutron and proton densities are then

nn =
(1 + α)

2
n = (1 − x) n & np =

(1 − α)

2
n = x n .

For nuclear matter, α = 0 (x = 0.5), whereas,
for pure neutron matter, α = 1 (x = 0).

Write the energy per particle (by simplifying E/A to E) as

E(n, α) = E(n, α = 0) + ∆Ekin(n, α) + ∆Epot(n, α) , or

• 1st term := energy of symmetric nuclear matter
• 2nd & 3rd terms := isospin asymmetric parts of kinetic and
interaction terms in the many–body hamiltonian
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Neutron-rich Matter-II
In a non–relativistic description,

εkin(n, α) =
3

5

~
2

2m

[
(3π2nn)2/3 nn + (3π2np)

2/3 np

]

= n 〈EF 〉 ·
1

2

[
(1 + α)5/3 + (1 − α)5/3

]
.

• 〈EF 〉 = (3/5)(~2/2m)(3π2n/2)2/3 := mean K.E. of nuclear matter.

∆Ekin(n, α) = Ekin(n, α) − Ekin(n, α = 0)

= =
1

3
EF · α2

(
1 +

α2

27
+ · · ·

)
.

• Quadratic term above offers a useful approximation ;
• From experiments, bulk symmetry energy ' 30 MeV ;
• Contribution from K.E. amounts to E0

F /3 ' (12 − 13) MeV ;
• Interactions contribute more to the total bulk symmetry energy .
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Neutron-rich Matter-III
E(n, x) = E(n, 1/2) + S2(n) (1 − 2x)2 + S4(n) (1 − 2x)4 + · · · .

• S2(n), S4(n), · · · from microscopic calculations.

Chemical Potentials :
Utilizing E = ε/n, n = nn + np, x = np/n, and u = n/n0,

µn =
∂ε

∂nn

∣∣∣∣
np

= E + u
∂E

∂u

∣∣∣∣
x

− x
∂E

∂x

∣∣∣∣
n

,

µp =
∂ε

∂np

∣∣∣∣
nn

= µn +
∂E

∂x

∣∣∣∣
n

,

µ̂ = µn − µp = −
∂E

∂x

∣∣∣∣
n

= 4(1 − 2x)
[
S2(n) + 2S4(n) (1 − 2x)2 + · · ·

]
.

• µ̂ determines the composition of charge neutral neutron star matter.
• µ̂ governed by the density dependence of the symmmetry energy.
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Charge neutral neutron-rich matter-I
• Old neutron stars are in equilibrium w.r.t. weak interactions.

• The ground state consists of strongly interacting hadrons and weakly
interacting leptons generated in β-decays and inverse β-decays.

• Local charge neutrality and chemical equilibrium prevail.

First consider matter with neutrons, protons and electrons involved in

n (or + n) → p (or + n) + e− + νe ,

p (or + n) + e− → n (or + n) + νe

• In cold catalyzed neutron star matter, neutrinos leave the system
leading to

µ̂ = µn − µp = µe .

(Later we will also consider the case in which neutrinos are trapped in
matter, which leads instead to µn − µp = µe − µνe

.)
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Charge neutral neutron-rich matter-II
• In beta equilibrium, one has

∂

∂x
[Eb(n, x) + Ee(x)] = 0 .

• Charge neutrality implies that ne = np = nx, or, kFe
= kFp

.

Combining these results, x̃(n) is determined from

4(1 − 2x)
[
S2(n) + 2S4(n) (1 − 2x)2 + · · ·

]
= ~c

(
3π2nx

)1/3
.

When S4(n) << S2(n), x̃ is obtained from β x̃ − (1 − 2x̃)3 = 0 ,
where β = 3π2n (~c/4S2)

3. Analytic solution ugly!

For u ≤ 1, x̃ << 1, and to a good approximation x̃ ' (β + 6)−1 .

• Notice the high sensitivity to S2(n), which favors the addition of
protons to matter.
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Charge neutral neutron-rich matter-III
Muons in matter :
When EFe

≥ mµc
2 ∼ 105 MeV, electrons convert to muons through

e− → µ− + νµ + νe .

Chemical equilibrium implies µµ = µe .

At threshold, µµ = mµc
2 ∼ 105 MeV.

As the proton fraction at nuclear density is small, 4S2(u)/mµc
2 ∼ 1.

Using S2(u = 1) ' 30 MeV, threshold density is ∼ n0 = 0.16 fm−3.
Above threshold,

µµ =
√

k2
Fµ

+ m2
µc

4 =
√

(~c)2(3π2nxµ)2/3 + m2
µc

4 .

• xµ = nµ/nb := muon fraction in matter.
The new charge neutrality condition is ne + nµ = np .
Muons make xe = ne/nb to be lower than its value without muons.
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Charge neutral neutron-rich matter-IV
Total energy density & pressure :

εtot = εb +
∑

`=e−,µ−

ε` & Ptot = Pb +
∑

`=e−,µ−

P`

• εb,` and Pb,` := energy density and pressure of baryons (leptons).

ε` = 2

∫
d3k

(2π)3

√
k2 + m2

` & P` =
1

3
· 2

∫
d3k

(2π)3

k2

√
k2 + m2

`

εb = mn0u +

{
3

5
E0

F n0u
5/3 + V (u)

}
+ n0(1 − 2x)2uS(u) ,

Pb =

{
2

5
E0

F n0u
5/3 +

(
u
dV

du
− V

)}
+ n0(1 − 2x)2u2dS

du
.

• As αem ' 1/137, free gas expressions for leptons are satisfactory.
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Charge neutral neutron-rich matter-V
STATE VARIABLES AT NUCLEAR DENSITY

Quantity Nuclear Stellar
matter matter

x̃ 0.5 0.037
εb/n − m −16 9.6

εe/n 0 3.18
Pb 0 3.5
Pe 0 0.17

µn − m −16 35.74
µp − m −16 −75.14

µe = µn − µp 0 110.88

Energies in MeV and pressure in MeV fm−3. The numerical
estimates are based on an assumed symmetry energy
S2(u) = 13u2/3 + 17u, where u = n/nb. 37/40



Nucleonic Equation of State

I Energy (E) &
Pressure (P )
vs. scaled density
(u = n/n0).

I Nuclear matter
equilibrium density
n0 = 0.16 fm−3.

I Proton fraction
x = np/(np + nn).

I Nuclear matter : x = 1/2.

I Neutron matter : x = 0.
I Stellar matter in β−

equilibrium :
x = x̃.
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Mass Radius Relationship

Lattimer & Prakash , Science 304, 536 (2004).
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